

Mathematics Entrance Test for Year 7 entry

SAMPLE PAPER

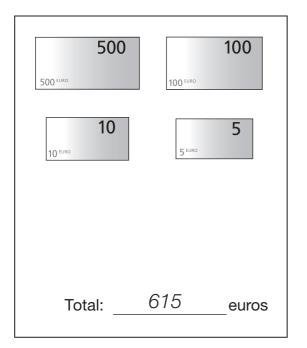
Instructions

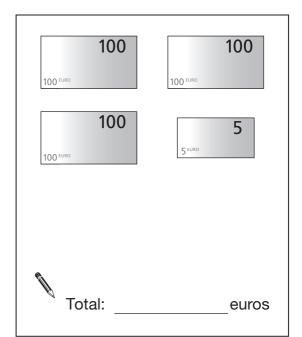
Answers

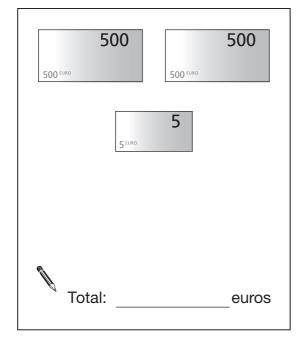
This means write down your answer or show your working and write down your answer.

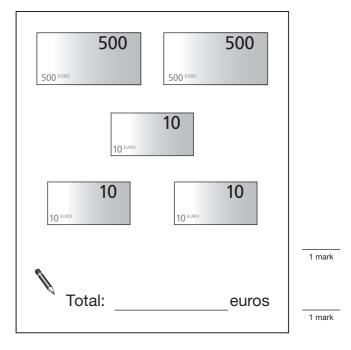
Calculators

You **must not** use a calculator to answer any question in this test.


Remember:


- The test is 45 minutes long.
- You will need: pen, pencil, rubber and a ruler.
- This test starts with easier questions.
- Try to answer all the questions.
- Write all your answers and working on the test paper do not use any rough paper. Marks may be awarded for working.
- Check your work carefully.


1. This question is about money called euros.


Write the total number of euros in each box.

The first one is done for you.

2. A sequence of numbers decreases by 3 each time.

Write the missing numbers in the sequence below.

You can use the number line on the right to help you.

2 marks

3. Here is part of the 36 times table.

$$1 \times 36 = 36$$

$$2 \times 36 = 72$$

$$3 \times 36 = 108$$

$$4 \times 36 = 144$$

$$5 \times 36 = 180$$

$$6 \times 36 = 216$$

$$7 \times 36 = 252$$

$$8 \times 36 = 288$$

$$9 \times 36 = 324$$

$$10 \times 36 = 360$$

Use the 36 times table to help you work out the missing numbers.

1 mark

1 mark

4. The table shows feeding times for some animals in a zoo.

	Start of feeding times			Length of feeding times
Elephants	11:15am 2:15pm 3:20pm 12:20pm 2:30pm		15 minutes	
Giraffes			15 minutes	
Otters	1:00 pm	1:00pm		10 minutes
Seals	1:00pm)pm 4:00pm		10 minutes
Tigers	2:30pm		30 minutes	

(a)	The first feeding	time for	giraffes	starts at	12:20 pm.
-----	-------------------	----------	----------	-----------	-----------

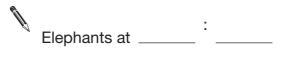
At what time does it finish?

1 mark

(b) One feeding time **finishes** at 3:00 pm.

Which animal's feeding time is this?

(c) A visitor arrives at the zoo at 1:45pm.


How many minutes later does the next feeding time for **elephants** start?

(d) A different visitor arrives at the zoo at 12:30 pm.

She wants to watch feeding times for elephants, otters and seals that day.

Write three feeding times that she could watch.

Otters at _____ : ____

Seals at _____ : ____

1 mark

5. Work out

1 mark

6. In America, there are coins each worth 25 cents.

These coins are called **quarters** because four of them make one dollar.

(a) Altogether, how many quarters make 3 dollars?

1 mark

(b) Laura has **20 quarters**.

How many dollars is that?

1 mark

(c) Dev wants to change 10 dollars into quarters.

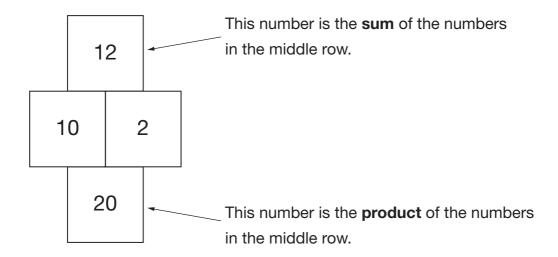
How many quarters should he get?

7.	(a)	Tick (✓) all the numbers below that divide by 5 with no remainder.					
		12	15	16	20	30	1 mark
	(b)	Tick (✓) all the r	numbers below	that divide by 3	with no remaind	der.	
		12	15	16	20	30	1 mark
	(c)	Tick (✓) all the r	numbers below	that divide by 1	5 with no remain	nder.	
		12	15	16	20	30	1 mark

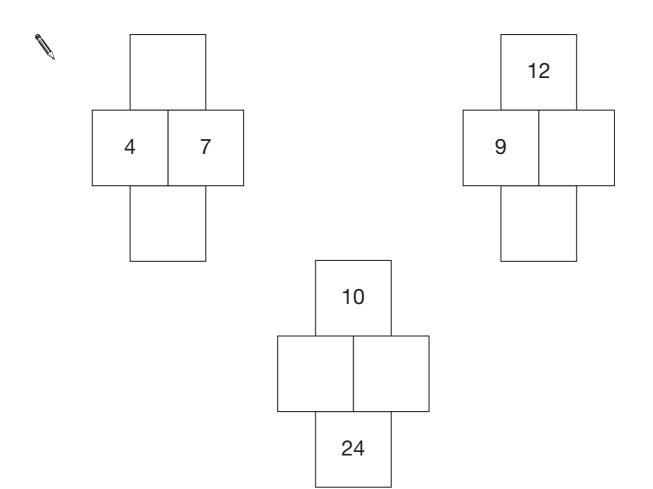
2 marks

8. The table shows the approximate populations of five different places.

Place	Approximate population
London	7 000 000
Sheffield	700 000
Harrogate	70 000
Ash Vale	7 000
Binbrook	700

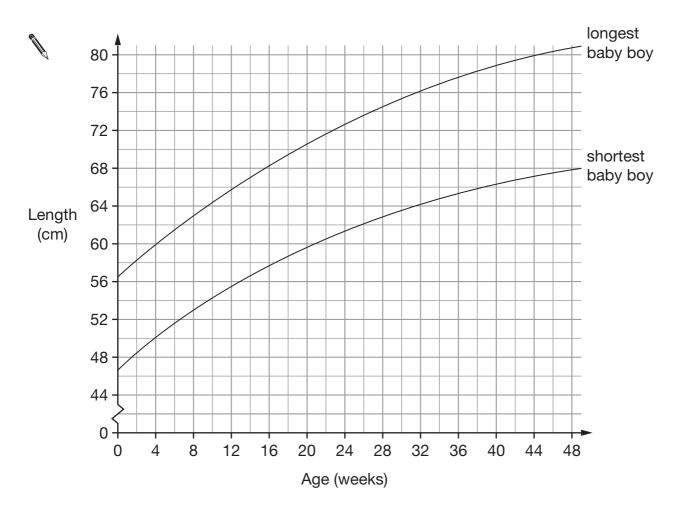

(a)	Which of the places has a population of about seventy thousand ?	
		1 mark
(b)	Use the table to complete these sentences.	
	The population of Harrogate is about 10 times as big as	
	the population of	
	The population of is about 100 times as big as	
	the population of Harrogate .	

The population of **Sheffield** is about ______ times as big as


the population of **Ash Vale**.

3 marks

9. Here are the rules for a number grid.



Use the rules to write the missing numbers in these number grids.

10. The lengths of babies are measured at different ages.

The graph shows the longest and shortest a baby boy is likely to be.

(a) Write the missing numbers below.

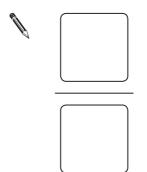
A baby boy is **8 weeks old**.

The **longest** he is likely to be is about _____ cm.

1 mark

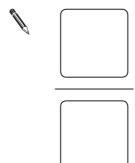
The **shortest** he is likely to be is about _____ cm.

1 mark

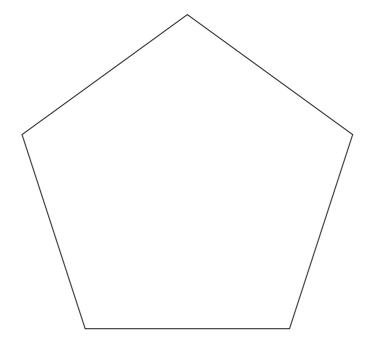

(b) A **34 week** old baby boy is **72cm** long.

Put a cross on the graph to show this information.

11.	Horo	ara civ	number	carde
11.	пеге	are six	number	carus.


2 6 8 10 12

(a) Choose two of these six cards to $\text{make a fraction that is equivalent to } \frac{1}{3}$


1 mark

(b) Choose two of these six cards to $\text{make a fraction that is } \textbf{greater than } \frac{1}{2} \text{ but less than 1}$

12. The shape below is a regular pentagon.

All five sides are exactly the same length.

Measure accurately one of the sides, then work out the **perimeter** of the pentagon.

1 mark

mark

Perimeter = cm

13. (a	a)	A three-digit number is a multiple of 4	
		What could the number be?	
		Give an example.	
		Now give a different example.	
			1 mark
(k	၁)	A two-digit number is a factor of 100	
		What could the number be?	
		Give an example.	
			1 mark
		Now give a different example.	
			1 mark

1 mark

14. (a) Write the answer to this calculation.

(b) Now write a number in each box to make this calculation correct.

The three numbers must be the **same**.

15. Sam says:

The **only** four-sided shape with four right angles is a square.

Is Sam correct?

Explain your answer.

16. (a)		When $x = 8$, what is the value of $5x$?					
		Tick (✓) the correct box below.					
		5 13 40 58 None of these					
	(b)	When $x = 8$, what is the value of $3x - x$?					
		Tick (✓) the correct box below.					
		0 3 16 30 None of these					
	(c)	When $x = 8$, what is the value of x^2 ?					
		Tick (✓) the correct box below.					
		8 10 16 64 None of these					

17. Lisa uses a grid to multiply 23 by 15

×	20	3
10	200	30
5	100	15

$$200 + 100 + 30 + 15 = 345$$

Answer: 345

Now Lisa multiplies two different numbers.

Complete the grid, then give the answer below.

×		40	3
30			
	600		18

Answer:

3 marks

18. Fred has a bag of sweets.

Contents

- 3 yellow sweets
- 5 green sweets
- 7 red sweets
- 4 purple sweets
- 1 black sweet

He is going to take a sweet from the bag at random.

(a) What is the **probability** that Fred will get a **black** sweet?

1 mark

(b) Write the missing **colour** in the sentence below.

The probability that Fred will get a

sweet is $\frac{1}{4}$

Write a number in each box to make the calculations correct. 19.

1 mark

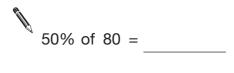
_	=	-8

1 mark

A rectangle has an area of 24 cm² 20.

How long could the sides of the rectangle be?

Give three different examples.



cm and

____ cm and

_ cm and

21. (a) Write the missing numbers.

2 marks

(b) Work out 56% of 80

You can use part (a) to help you.

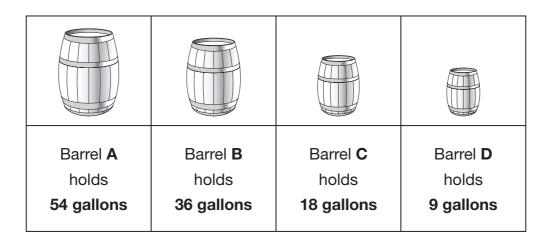
22. Look at this equation.

$$y = 2x + 10$$

(a) When x = 4, what is the value of y?

1 mark

(b) When x = -4, what is the value of y?

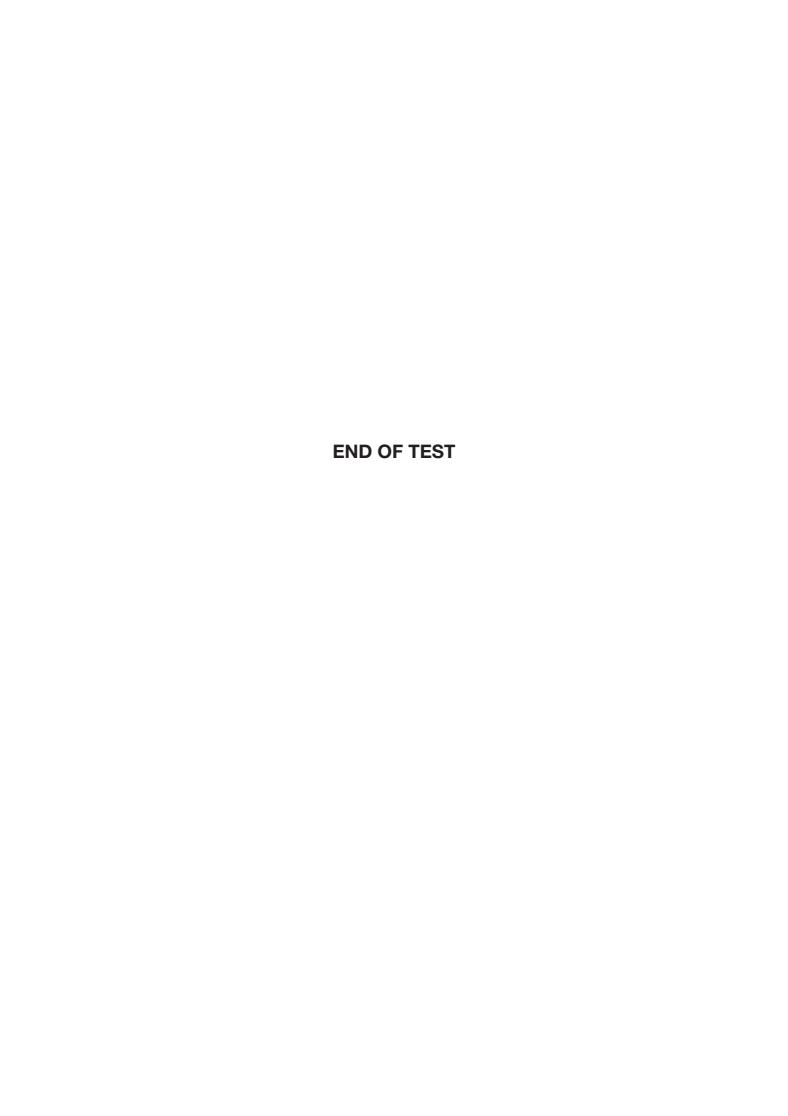

1 mark

(c) Which equation below gives the **same** value of y for both x = 4 and x = -4? Put a ring round the correct equation.

$$y = 2x \qquad \qquad y = 2 + x \qquad \qquad y = x^2 \qquad \qquad y = \frac{x}{2}$$

23. The diagram shows four different sized barrels.

Write the missing fractions as simply as possible.


The first one is done for you.

Barrel **C** holds $\frac{1}{2}$ of the amount barrel **B** holds.

Barrel **D** holds of the amount barrel **B** holds.

Barrel **C** holds of the amount barrel **A** holds.

Barrel **B** holds of the amount barrel **A** holds.

